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Frequency-Domain Analysis of

Strongly Nonlinear Circuits Using a

Consistent Large-Signal Model
Tapani

Abstract—This paper describes an analysis method that extends

the applicability of the frequency-domain methods to strongly
nonlinear circuits. Nonlinearities are described with Chebyshev
expansions which are evaluated with a numerically stable three-

term recurrence formula. The method is coupled with a novel,
measurement-based consistent modeling approach which allows
improved accuracy in describing the frequency-dependence of the
measured small-signal parameters. The analysis method and the

modeling aum’each are verified bv com~arirw measurements and
‘,. . ..=

calculations on a MESFET mixer, driven with

tones.

I. INTRODUCTION

two and three

H ARMONIC-BALANCE (HB) methods have matured

into a reliable workhorse in the design of nonlinear

microwave circuits. However, when the circuit has several

excitation frequencies, the analysis becomes easily impractical

due to the long computation time. Even with only two inde-

pendent tones, the analysis is very slow on a workstation [1],

and the calculation of the intermodulation products of a mixer

with three independent frequencies is most conveniently done

on a supercomputer [2]. At present the maximum number of

independent frequencies that can be handled with HB software

is limited to three, although there would be need for more, for

example in the satellite communication systems.

Frequency-domain methods do not suffer from the same

limitations: both the linear and nonlinear parts of the circuit are

analysed in the frequency domain so that the time-consuming

conversions between frequency and time domains are avoided

[3]. The number of independent frequencies is not limited to

three; it is the total number of frequencies. not the number

of fundamental frequencies. that determines the complexity

of the problem. The spectral-balance method of Rhyne et al.

[4], which uses power series to approximate the nonlinear

functions, is a well-known example of frequency-domain
methods.

Modeling of nonlinear devices has been the weakest point

of the frequency-domain approach. Nonlinear components are

traditionally modeled in the time domain by using algebraic

equations to describe the nonlinearities. These equations them-

selves are typically simplified with nonconsistent construction,

limited bias or frequency range, etc., and determining the
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model parameters by fitting the equations into measured data

is often a complicated and inaccurate procedure. Such a model

can be converted suitable for the frequency-domain analysis

by fitting power series [4], polynomial expansions [5], or

specific functional approximations [6] to the model equations.

However, this is neither accurate nor elegant approach.

Second, approximation of strongly nonlinear functions with

power series requires that there is a great number of terms.

e.g., several tens, in the series. Large coefficients are needed

for the high-degree terms in the power series and this de-

grades significantly the numerical accuracy. As a result, the

application of the methods using power series to describe the

nonlinearities has been limited to relatively weakly nonlinear

circuits. For example, to the author’s knowledge no results

have been published about the application of the generalized

power series method [4] to strongly nonlinear cases like mixers

under large RF-signal excitation.

This paper describes a frequency-domain method where

both the limitations of the conventional power series ap-

proach are removed: All the nonlinearities are represented

in this method with Chebyshev expansions instead of power

series [5]. [7], and [8]. Excellent numerical stability of these

expansions, when evaluated through a recurrence formula,

allows the use of high-degree expansions, which are necessary

for describing strongly nonlinear devices. A novel consistent

modeling approach is presented, where the frequency-domain

large-signal model is constructed directly from small-signal

measurements through integration [9], without the intermediate

step of fitting to algebraic model equations, In comparison,
e.g., to the Root model [10], this approach offers possibilities

for more accurate representation of the frequency-dependence

of the small-signal y-parameters of the device. This principle

allows the description of the frequency-dependent character-

istics (e.g., gd, ) of the device in a natural way, in contrast

to the HB methods, where the time-domain formulation of the

nonlinearities makes it very difficult to construct a large-signal

model that is accurate both at dc and RF. In fact, the earlier

disadvantage of the frequency-domain approach, modeling of
nonlinear devices, is now turned into an advantage,

Coupling the new large-signal model to the frequency-

domain algorithm results in an effective and accurate method

for analysing nonlinear circuits under multi-tone excitation.

This is demonstrated in the last part of the paper, where

measured and calculated results for a MESFET mixer are

compared. The method is so efficient that the intermodulation
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Fig. 1. Flow-chart of the frequency-domain algorithm.

analysis of the mixer, with three independent tones and over

100 frequencies in total, is possible on a PC, even with so

high RF levels that the mixer is driven to the saturation of the

IF and beyond.

II. FREQUENCY-DOMAIN ALGORITHM

The flow chart of the algorithm is shown in Fig. 1. Main

differences in comparison to the conventional HB methods

are in the following blocks.

1)

2)

3)

With

Nonlinear elements are approximated with Chebyshev

expansions (Step 1).

The frequency-domain response of the nonlinear el-

ements for given spectra of the driving voltages is

calculated directly in the frequency domain (Step 6).

For this purpose the frequencies are selected prior to the

analysis in Step 3.

The frequency-domain formulation of the problem al-

lows very economical evaluation of the Jacobian in Step

8.

strongly nonlinear circuits the full Newton step fails-.
very often and some stiategy for global convergence has to

be adopted. Presently, the backtracking line-search algorithm

is used for this purpose [11]. Details of the frequency-domain

algorithm are discussed in the following chapters, followed by

a description of the large-signal model.

A. Selection of Frequencies

In the frequency domain method of this study, the frequen-

cies at which the circuit is to be analysed, are always selected

before solving the circuit equations. During the analysis, this

set of frequencies, or the frequency set S, is kept fixed and

only those harmonics and intermodulation products falling on

these frequencies are taken into account in the analysis. Each

frequency w~ of the frequency set can be written with the help

of P fundamental frequencies WI, wz, . . u, WP

wk = klwl + kzwz + ~. . + kPWP (1)

where the harmonic numbers kl, , . . . lcp are integers. For each

frequency the order is defined as

(2)

Determining the frequencies includes the selection of the

maximum values for the harmonic numbers kl, ..., kp, so

that all the significant frequencies are retained, but the total

number of frequencies Nfreq is kept to the minimum,

Two quantities are used to determine the frequency set,

maximum number of harmonics (maxi-I) and maximum order

of intermodulation (maxIMt). maxH is a vector containing the

maximun harmonic numbers for each fundamental frequency

maxH = [kI~~X kz~~~. . . kp~~~ IT (3)

and maxlllt is a scalar. maxH gives the maximum number

of harmonics for each of the P fundamental frequencies

and maxIMt indicates the maximum order of intermodulation

products taken into account. Only positive frequencies are used

in the calculations. Thus the frequency set S is defined by the

following conditions

S = {W I W = klwl +k2w2 + . . . +kPwP; Cl, CZC3} (4)

cl. W>o

C2. Ik,l<k,max, i=l,2,., P

C3. ORD(W) s maxIMt,

when at least two harmonic numbers, k~

and Icj are not zero.

This selection of frequencies is unconventional. More often

the spectrum is either triangular, for which C3 holds for

all i, or rectangular, which is defined by C2. The reason

for this more complicated truncation criteria is the additional

flexibility in controlling the frequency set, as the number of

harmonics for each of the fundamental frequencies can be

separately controlled and, in addition, the maximum order of

the intermodulation products can be independently defined.

In this study the frequencies of the frequency set are

arranged, starting from zero (=dc) according to the increasing

order. The highest order in the frequency set is maxORD

maxORD = max{ lcimax, maxIMt}. (5)

Within each order, the frequencies are sorted by magnitude,

with the lowest frequency coming first and the highest fre-

quency last. The frequencies are written, in this order, to
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the frequency vector (frequency table) ftab. All the voltages,

currents, charges etc are represented in the analysis with

complex vectors of phasors with length equal to Njreq, the

number of frequencies. The phasors are arranged in the same

order as in ftab, and if the frequency ,fk of a certain phasor

~~ is needed in the analysis, it is available as the kth element

of the frequency table ftab [k]. Associated with the frequency

table is the irlterinodulation table imt, which is a vector of

integers giving the indices (row numbers) of ftab at which

each IM-order begins. This vector is used when performing

the multiplication of two waveforms in the frequency domain.

B. Frequency -Doinain Operations

All the voltages, currents, charges and other waveforms of

the nonlinear circuit are represented in the following form in

the time domain, here written for the voltage

N

u(~) == ~{T~L cos(ti~, i) – V~5 si~l(o~~)}. (6)

k=o

Thus the frequency component of the voltage at frequency w~

is given either with two real numbers, V~, and V~,, or with a

complex plzasor Ij. These two are related according to

~~ = lt’~le]Y’ = ~~C +jvj~. (7)

The time-domain quantities, waveforms, are written with low-

ercase letters, e.g., t](t), and the corresponding representations

in frequency domain, (frequency) spectra, are written with

bold typeface, e.g., v.

Following symbolic notation is used to indicate the re-

lationship between the time-domain and frequency-domain

representations

v= E’{u(t)} or v +v(t). (8)

The spectrum corresponding to the waveform (6) is given with

the real (21V + 1) x 1 vector X, where underlining indicates

the fact that it is a real vector

y = [T~ v~c VI. V2C l~b ., , Vjjrc v~, ]T. (9)

Alternatively, the spectrum is given with the complex vector

of phasors (V. is the real dc voltage)

v=[l~ V1 T\ ... v~]T. (lo)

Generally, lowercase letters are used for scalars. bold lower-

case letters for vectors, and bold capital letters for matrices.
Nonlinear components are described in this work with

the help of single and double Chebyshev expansions for

the nonlinear functions. For strongly nonlinear devices also

rational functions can be used [12]. Evaluation of the time-

domain response of these components to an excitation of

the form of (6) involves only the basic algebraic operations

addition, subtraction, multiplication and division between the

two waveforms o(t) and b(t). In the frequency-domain al-

gorithm the response is calculated directly in the frequency

domain. This means that we have to be able to calculate

the frequency-domain equivalents to these basic operations

between two frequency spectra a and b, remembering that a

and b are complex vectors of the phasors like in (10), where

the frequencies are truncated and sorted as was described

ealier.

Addition and subtraction of two spectra are trivial

c(t) = a(t) + b(t) w c = a+ b. (11)

In contrast. time-domain multiplication and division are

nonlinear operaticlns resulting in the generation of new fre-

quency components. Product in the time domain corresponds

to the convolution in the frequency domain

cab s c=axb (1’2)

and division in the time domain is the inverse operation,

corresponding to the decontolution in the frequency domain

b(t) = c(t)/a(t) ~ b = c#a. (13)

Here the symbol “#” is used to indicate the deconvolution.

Repeated application of these operations during the evaluation

of the response of the nonlinear component results in very

large number of frequencies, even if there are only few driving

frequencies. However, phasors at many of these frequencies

are insignificant (Harmonics and intermodulation products of

high order). The b~sic principle is adopted that the frequencies

of interest are determined prior to any circuit analysis. Thus

the length of voh age, current, charge, etc., vectors remains

constant (=Njreq) throughout the analysis and only the com-

plex amplitudes of each frequency component change during

the analysis.

In the following chapters the calculation of the last two oper-

ations in the frequency domain is described, first two different

ways of calculating the product (12) and then the division (13).

These operations were outlined earlier in [12], and a similar

set of operations was also included in the “arithmetic operator

method’ m [6]. However, since the approach taken here with

special emphasis to the effective truncation of frequencies, is

somewhat different to that in [6], it is justitied to present a

detailed description of the frequency-domain operations.

Direct Ml!ltiplication: The most straightforward way of
calculating the time-domain product (12) is to multiply, in turn,

each complex phasor Al = AC, + jA3, of a,(t) by each phasor

Bj = B~J + j13,1 of b(t) and apply trigonometric rules to
assign the result to the corresponding phasor C~~= ~Ck +jC~~

of c(t). Three possible cases are encountered when multiplying

phasors A% and BJ, depending on the magnitudes of w, and w]

1) Sum frequency:

CL= A, BJ/2 tik=wz+wj~s

AND

{2) Difference frequency (positive):

CL = A, . BJ/2

OR
ll%=wL—w, Gs

3) Difference frequency (negative):
C’k = A; . B1/2 tik=til— w, G s}

where the asterisk ( * ) indicates complex conjugate.

Thus each phasor of c is calculated

Ch = ckp + ckmp + Cknm ( 14a)
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where

and

1P = {(i, j)

ImP = {(i)j)

(14b)

(14C)

(14d)

LJ~+Wj= Wk; Ldij Ldj)LJk~s} (14e)

W~ –Wj =wk; w~, wj, wk ~ S} (14f)

mn={(ij) lwj-~i= wk; wi, wj, wk~s}. (1%)I

On some occasions, it is useful to be able to omit the

multiplications between high-order phasors. Recalling that the

frequencies in a and b are determined by the frequency table

ftab (through quantities maxH and maxIMt ), we now define

a new quantity maxIMp, which sets the maximum order of

the interrnodulation products that are taken into account when

calculating the convolution. Setting ma.xIMp = ,2 maxORD

is the normal case and it means that all the components

fallirlg on the frequency set S are taken into account when

calculating the convolution, while ma.xIMp = 1 neglects all

the frequency conversions. maxIMp, gives additional flexibility,

as the number of multiplications in the calculation of the

convolution can be reduced by excluding products between

high-order frequencies by setting maxZMp <2 maxORD. This

is demonstrated in Fig. 2.

The phasors in a and b are arranged in the ascending order

of interrnodulation and thus it is easy to avoid unnecessary

multiplications by performing the multiplication of each Ai in

turn with only those Bj with O < j < jmax, where ~max is

the maximum index of ftab so that ORD(WZ) + ORD(Wj) S

max,rMp. In the practical procedure it is important to avoid

comparison and branching operations and to use predeter-

mined, direct mapping instead. Since we have defined exactly

in which order and how the multiplications are performed,

the result from each product of two phasors can in fact be

assigned to the corresponding output phasor ck with the help

of precalculated index vectors. All the necessary products

(but only those!) between the real and imaginary parts of the

phasors of the two spectra are calculated into a single vector

and the final result is obtained simply through assignment and

addition operations using these index vectors.

Tlhese two features, avoiding all unwanted multiplications

and the use of precalculated index tables, are instrumental in

making the convolution procedure efficient. This procedure

of calculating the truncated convolution was originally used

in [.5] and is conceptually similar to the spectrum mapping

principle of [13].

Convolution as a Matrix Product: The direct procedure de-

scribed above is fast and well suited to repeated calculation

of the product (12) as required in the recursive evaluation

of the Chebyshev expansions in the frequency domain. In

some occasions, however, it is advantageous to formulate the

ORDER OF@ j ~

QI,2 ,3,4,5
;;

2

3

4

5

ma$Mp max;Mp
=

Fig. 2. Example on how the frequencies included in the frequency-domain
convolution are affected by the parameter maxIMp. Two fundamental fre-
quencies.

product as an explicit matrix product

c(t) = a(t) . b(t) ~ Q = ~” ~. (15)

This is the case for example when the inverse operation or

division has to be performed, as will be seen later. Calculating

the convolution as a matrix product was originally developed

in [12], where rational functions were used to describe strongly

nonlinear components. The arithmetic operator method of

reference [13] follows the same principle.

The product (15) cannot be formulated using complex
representation (10), instead ~ and ~ are written as real (2N +

1) x 1 vectors, as in (9). The (2N + 1) x (2N + 1) convolution

matrix ~ is formed through a transformation from q, here

written symbolically with operator “w”

~=~ (16)

This transformation is found by first writing (15) in the matrix

form

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . ., . . . .

. . . . . ,.. .

. . . . . . . . .
. . . . . . . .

J

,4(f)

B.

Blc

B13

B;.

Bj,

BNC

BN,

(17)

Submatxix Z(i~J gives the contribution of the frequency com-

ponent at Wj in b(t) to the frequency w~ in c(t)
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It is calculated. for each pair of frequencies w, and w~. from

those phasors .Ak in a(t) which, when multiplied by phasor

B] at frequency WI, give contribution to the phasor C’, at

frequency w,. The submatrix Z~’Jl consists of three parts,

corresponding to whether w, is the sum frequency, positive

difference frequency or negative difference frequency of wk

and Wj

z(z~) = Zjk) + Z(# + z(k)
mn. (19)

1) Sum frequency

2) Positive difference frequency

3) Negative difference frequency

Only those frequencies w~ c S are included in (20) which

satisfy the condition

ORD(w~ ) + ORD(wj ) S ma.xIMp. (21)

Again. index tables are formed prior to the circuit analysis. cor-

responding to the three cases above. During the analysis, the

construction of the matrix ~ in (15) requires only assignment
and addition operations on the elements of vector ~. Vector s

is then obtained from the conventional matrix product.

Division: Calculating the convolution as a matrix product

(15 ) with the help of the convolution matrix ~ = & has

the consequence that the time-domain division (13) can be

calculated by inverting this matrix

b(t) = c(t)/(7(t) +’ b= A-l g. (22)

In practice ~ is most efficiently calculated by solving the

set of linear equations (22). explicit formulation of the inverse

matrix is generally not required. Being able to calculate the

division of two waveforms in the frequency domain allows us

to use rational functions (and continued fractions) to model

nonlinear components [12]. The same principle will also be
used 1ater to construct and invert the Jacobian in the Newton’s

method.

In this last application, the ability to control the order of

intermodulation products in matrix ~ by maxZMp is especially

beneficial: in principle ~ is a dense matrix, but reducing

ma.rIMp results in sparser ~, which additionally is then close

to lower triangular. Fig. 3 shows an example of the structure

of the convolution matrix. It is possible to take benefit from

the sparsity and special structure of ~ and write a special

algorithm to solve the system (22) efficiently. In this work this
has not yet been done, but ~ is handled as a full matrix and

Crout’s algorithm is employed to solve the system of linear

equations.

Fig. 3. Example of the structure of the corrvolutlorr matrm Each dot mdl-

cates a mmzero entry m the matrix. Two fundamental frequencies, madkfp
= 5.

III. LARGE-SIGNAL MODEL

We now turn to the construction of the frequency-domain

nonlinear model. The model is measurement based, which

means that the measured small-signal data is used directly,

without the need to fit the data to algebraic formulas. This work

concentrates on the modeling of a MESFET, but the modeling

principle is completely technology independent. In fact. this

approach was used earlier in [9] to describe the currents

of a “complete” black-box model for the extrinsic FET,

including parasitic. In that work the separate determination

of the parasitic was not necessary, they were included in

the nonlinear model itself. Here we use the g-parameters of

the intrinsic FET to construct the model; in this way the

frequency-dependence of the y-parameters is less severe and

lower order series are sufficient for the accurate representation

of the y-parameters.

We assume that the currents at the two terminals of the

intrinsic FET, driven with large-signal voltages Zq(t). /}2(t),

can be written in the following form (? = 1,2)

c1 (1)
i,(t) = gy(’ul, Uz) + jpi (’u, W2)

This expression is an extension of the conventional quasistatic
formulation [14], [15], where only the first two terms of the se-

ries expansion are included, namely the static current through
(o)

a nonlinear conductance, g, , and the first order dynamic

“‘1 ) The highercurrent through a nonlinear capacitance, q, .

order terms allow an accurate description of the frequency-

dependence of the measured small-signal parameters, as will

be shown below. We have a large-signal circuit model as

shown in Fig. 4.

We require that the model is time-invariant, i.e., the nonlin-
(0)

ear functions g,,
(k)

and q, are not explicit functions of time,

but their time-dependence is solely through the dependence

on the two controlling voltages. Further, we assume that the
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Fig. 4. Large-signalmodel for a nonlinear two-port.

partial derivatives of these functions

i,j=l,2 k=l, !2, . . . (24)

depend only on the instantaneous voltages VI(t), V2(t),and

not cm their time-derivatives. With these assumptions, we can

write the small-signal response of the device at port i, at

dc bias point Vlo, V20, to a small variation in the voltages

dvl ( t), dvz (t)in.the following form

Czzi(t) = hy &Jl + IL:;)Ct/4+ hy dill

(25)+ hydi2 + I&dtil + hgh2 + . ~. .%

Here all the partial derivatives are developed at the dc oper-

ating point, Moving to the frequency domain, we obtain the

response to a small sinusoidal excitation dvl (~k ), dvz (.fk ), at

frequency jk

dii(fk) = [hI:)+ (jw)hy +(M)%y + “ “ o] “ dvl(.fk)

+ [Fig) + (jLdk)hJ;) + (jkk)vg) + . ..] . dv2(.fk).

(26)

This can be compared with the measured small-signal response

at a dc bias point (Vlo, V20)

dii(fk) = yil(vlo, V20, W) “ d~l(fk)

+ yi2(vlo, V20, W) “ A2MC). (27)

Here Yij (VIO, V20, wk) are the measured small-signal

y-parameters of the intrinsic FET at the bias point (VIO, V20)

and frequency fh. We can now see that the higher order

terms in (23) account for the frequency-dependence of

the measured y-parameters: The second-order term gives

quadratic frequency-dependence to the real part of yzj, the

third-order term causes cubic variation in the imaginary part of

yij and so on. Thus we can identify each of the terms in (25)

directly from the measurements. The large-signal functions

in (23) can then be calculated from the path-independent

line integrals [10]

9[0)(% V2) = &o(Wo, V20) +
/

“(t) h$:)(vl, Vzo)dul

VI 0

/

w (t)

+ hy (?)1 (t) , ‘uZ)d’vz (28a)
V*O

g$k)(vl, V2) =
/

“(t) h: f)(vl, Vzo)dul

Vlo

We can notice that it is important that the small-signal func-

tions h~$) do not depend on the time-derivatives of the

voltages, since, if this were the case, it w~$d be impossible

to construct the large-signal functions gi ‘k) fromand qi

static small-signal measurements only. The model of (23) is

quasistatic despite the presence of higher order terms in the

series which correspond to higher order circuit elements [16]

in the small-signal circuit model,

We observe that retaining only the first two terms in the

series (23) gives resemblance to the Root model [10], where

the frequency-dependence of the real parts of gll and y12

(caused by the series connection of r~ with C,s and rgd

with 6’@, respectively) are neglected. Keeping higher order

terms in the series allows more accurate description of the

frequency-dependence of the y-parameters of the intrinsic de-

vice in a consistent manner. The large-signal and small-signal

models are inherently consistent, since the large-signal model

is directly constructed from the small-signal characteristics

through the line integrals (28). It should be noted that the

“delay-effect,” corresponding to the imaginary part of y21

(which is normally described with~ in small-signal models) is

represented in this model with h~l’, i.e., as a transcapacitance,

as is done also in [10].

Next step in the modeling is finding the Chebyshev ex-

pansions to describe the dependence of each of the h~f)

functions on the two bias voltages. For example, for the static

conductance we have

LK

Here z and y are the bias voltages, normalized to [– 1 . . . + 1]

and K and L are the degrees of the expansion in the two

dimensions. Standard surface-fitting procedures can be used

to determine the Chebyshev coefficients amn [17]. The co-

efficients are then written into matrix H~~), which has the

dimension (K+ 1) x (L+ 1). In practice, the coefficients for

a high-degree expansion are first determined and the degree is

then reduced as long as the approximation error is acceptable.
With the Chebyshev expansions, in contrast to the power

series, the coefficients for a lower-degree expansion are found

simply by truncation of the higher degree coefficients at the

desired point.

For the evaluation of the line integrals in (28), the Cheby-

shev coefficients for the integrated small-signal functions have
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to be determined. This is easily done from the coefficient

matrices H\~) for the functions h~~) by using the integration

formula of the Chebyshev polynomials [18]. The resulting

matrix of coefficients, integrated, e.g., over z (that is, over

VI), is written as H$~~.

IV. EVALUATION OF THE CURRENTS

IN THE FREQUENCY DOMAIN

Functions approximated with Chebyshev expansion are

evaluated in a numerically stabe manner by using the well-

known Clenshaw’s recurrence formula [18]. In the frequency

domain, a two-dimensional function f(~, y) is evaluated from

the following recursion, by first calculating vectors Ci in

y-direction for each i = K, K – 1, ~! , ,0

~& = ~~ol = ~

b(z) =2y*b~~l-b$~2+aij6 j=-L, ~-1,.,0J

c~ = @ - b!?) (30a)

Next, these coefficient vectors are used to evaluate the function

in .x-direction

d.y+z = dK-+~ = O

d,=2. x*di+l–d,+z+c~

z= K, K–l, . . ..O (30b)

f(x>y) = jdo – dz).

Here x and y are the normalized voltages VI and V2, matrix

A contains the Chebyshev coefficients aaj and its dimension

k (K + 1) x (L + 1) and b is a (JV + 1) x 1 vector, with
the first element equal to one and the others zeros. We use the

short notation with operator T{} for this recursion

f(x, y) = 7’{A, X, Y}. (31)

We are now able to calculate the large-signal functions, given

in (28), directly in the frequency domain, for given spectra of

the driving voltages

gi(vl, V2) = T{q?c, Z()> yo}6

+ a [T{ J3j;~, x, yo~} – T{ H$:L, xoc$,YOC$}]

+ ~. [T{ Hj:j, x, y} – ~{~$;, x, yo~}]

(32a)

q$k)(vl, v2) = 0, [~{@$~,x, Yd} – T{ H::j> ~0~, Yofi}]

+/5 [T{ H:;; ,x, Y} – ~{ Hj;; ,x, Yo~}]

(32b)

Here zo, yO is the normalized dc operating point, J3~c is the
matrix of Chebyshev coefficients for the dc current in port

z and a and @ account for the change of variables in the

calculation of the line integrals

dvl VI ~~x – VI ~i.
(-J.=.

(33)

.nb

v~ (0z~

Fig. 5. Circuit model for the simulation of the mixer measurements

The current at port z of the device, given in (23), is then

calculated in the frequency domain

iz(vl, vz) = gz(vl, v2) + f2 qjl)(Vl, v2)

+fP. qf2)(v1, v2) +.... (34)

Here $2 is a (lV + 1) x (JV + 1) matrix with the angular

frequencies jwkin the diagonal and zero elsewhere.

V. JACOBIAN

The frequency-domain formulation of the analysis problem,

presented in the preceding chapters, allows the construction

of the Jacobian in a very economical way. We consider, as an

example, the circuit of Fig. 5, which is used in the next chapter

to analyse the operation of a MESFET as a mixer. The gate and

drain currents of the intrinsic FET are represented with current

sources, as was presented in the preceding chapter. Impedances

ZG, ZL, and 2.s constitute the linear part of the circuit: ZG

includes the parasitic in series with the gate and the generator

impedance, which is 50 Q at RF frequencies. Similarly, ZL

represents parasitic at the drain lead and the load impedance.

Voltage sources el and ez provide the excitation to the circuit:

el includes the dc gate voltage, LO source and one or two RF

generators, while e2 consists only of the dc drain voltage,

Given the voltage spectra V1 and V2 at the terminals of the

intrinsic FET, the gate and drain currents are calculated from

(34). here written in an abbreviated form

{

il = fI(V1, V2) (35a)

iz = fz(vl,vz) . (35b)

The currents of the linear part of the circuit, calculated for the

same voltages, are

{

ilL = YG (Vl +vs’ – el) (36a)

i21. = YL (~2 +%’.S ‘e2] (36b)

Here YG and YL are diagonal matrices of the generator and

load admittances. Ideally, the magnitudes of these currents

should be the same as those calculated from the nonlinear part

of the circuit in (35). However, since we do not not know

exactly the correct voltages, we have the error vectors

(
&l = il + ilL

=[l+Z~YG]i~
+z,5’.YG.i’2+YG.(v~-e~)

(37a)

C2 = iz + iZL

[
=zsyLi~+[l+zs.yL]i2

+yL(v2-e 2).
(37b)
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Here 1 is the identity matrix with dimension (~~ieq x ~jreq).

For the next iteration, we have to find the changes in the volt-

ages, Avl and AV2, that are needed to reduce the predicted

error to zero. In the time domain, changes Avl (t), AV2 (t)

cause the following changes in the currents

{

Az~(t) = * . Avl(t) + * . A’m(t) (38a)

Ai2(t) = * . Awl(t)+ * oAlJ2(t) . (38b)

Writing the spectra of the derivative waveforms as h,j, the

changes in the frequency domain can be written with the help

of convolutions

{

Ail = hll * Avl + h12 * AV2 (39a)

Ai2 = hzl * Avl + h22 * AV2 . (39b)

Each term hij consists of zeroth and higher order terms, up

to the desired level

hij=h$;) +0. h$;)+02. ha;)+.... (40)

Calculating the convolutions from matrix products, as in (15),

we get

{:

Ail=k”&l+b12”&2 (41a)

&2=h21’&~+lk22 ”&2 . (41b)

Underlining here, as before, indicates that in the corresponding

vectors and matrices the real and imaginary parts are written

as real numbers, instead of the normal representation with

complex numbers. We can now write the resulting change in

the error vectors from (37). The corrections to the voltages

for tlhe next iteration Avl, AV2 are obtained by requiring that

this change cancels the error vectors of the current iteration

as shown in (42) at the bottom of the page. The matrix on the

righl-hand side is the Jacobian L. By combining the error and

voltage vectors into single vectors .s and Av, the correction to

the voltages is calculated by solving the set of equations

& = J-l (–g). (43)

This way of constructing the Jacobian is remarkably simple

and part of the calculations needed are in fact already done

when evaluating the currents from (32) and can be simply re-

used here. The transformation “~” in (41) is very fast, since

precalculated index vectors are used, as was discussed earlier.

Overall, in all the cases considered up to now, the additional

computer time required for construction and inverting the

Jacobian has been shorter than the time required for the actual

evaluation of the nonlinear functions.

VI. MODEL FOR A MESFET

A large-signal model was constructed for a 1 x 300 ~m

monolithic MESFET (VT = – 1.5 V) using the principle

described above. First, dc measurements were made and then

s-parameters were measured (on wafer) over the entire operat-

ing range of bias voltages (161 bias points, Vg. = –3 0..0.75

V, vd. = 0., .5 V) and frequencies (0.1 .0 .18.1 GHz).

Parasitic were extracted with the help of the measurements

on cold FET and Chebyshev expansions were fitted on the

y-parameters of the intrinsic FET.

In order to get an impression of how well the bias-dependent

small-signal model, consisting of Chebyshev polynomials,

represents the measured frequency and bias characteristics of

the FET, s-parameters of the model, including the parasitic,

were calculated at each bias point over the entire frequency

range from 0.82 to 18.1 GHz. At each point m = 1,...,2737

(161 bias points x 17 frequencies = 2737 points in total)

an error vector As,j (m) was calculated from the measured

(s,, (m)) and from the model calculated (sjj (m)) s-parameters

As,j(m) = .sij(m) – s~j(m)

i,j=l,2 m=l,2, ...,2737. (44)

The following statistical quantities were then calculated for

each s-parameter.

● ABS.ERR average magnitude of the error vector.

lAs~j(m)l.

c MAX.ERR maximum absolute error lAsij (m) 1.

● STD.DEV standard deviation of IAs~j (m) /.

● REL.ERR average relative error lAsij (m) I/lsij (m) \.

The effect of including higher order terms in (26) was

first studied. The first entry in Table I, marked with (a),

shows the statistics of the approximation errror with terms

up to order 5 included in the series. Each y-parameter was

approximated with a double Chebyshev expansion with the

maximum degree K = L = 12 which is sufficiently high to

accurately describe the bias-dependence of the y-parameters in

most bias points. Taking into account the very wide bias range

(from far below cutoff to strong gate conduction), the average

errors are very small, with typically 3YO approximation error in

the s-parameters. The maximum errors are greater, mainly due

to the fact that the maximum degree of 12 is not sufficient to

accurately represent the exponential nonlinearity of the gate

junction.

The next lines in Table I, marked with (b), show the

error statistics when only the static and first order dynamic

elements are included in the series describing the frequency-

dependence of the y-parameters, i.e., the admittances of the

intrinsic FET are modeled with a parallel connection of a

nonlinear capacitance and conductance, as is done in the Root

model [10]. Again the degree of the Chebyshev expansions

[ 1-[
—C2 [l+ Z~.XG].~ll+Z~. YG621+YG [l+zS.YG]”612+ZS.XGC622

1“[ 1

L&l
. (42)

—Q [l+zs” YLl”ii21+zs ”YL”iill [l+zs’”xLl ”ii22+zs’YL” L2+& &r2
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TABLE I
STATISTICSOF THE SMALL-SIGNAL MODELING ERRORINDIFFERENT

CASES: (ii) WITH HIGH ORDER ELEMENTS UP TO ORDER 51NCLUDED, (b)
WITH ONLY ZEROTH AND FIRST ORDER ELEMENTS INCLUDED, AND (c)

SAME AS CASE (b) BUT USING TRUNCATED CHEBYSHEV EXPANSIONS

ABS.ERR

M

a 0.011 0.004 0027 0015

b ‘ 0.039 0,012 0.097 0040
, 1

_.. Jb.dbQz 0010 OOS3 I 0024 ,

-ml 0013002’0036! 0.028

lb-l 003’\ 0.052 0,094 0.054
I I II

(c) 0,054 0.068 0.124 0.064

is 12. We can see that, while the errors are still small, the

average errors have increased by a factor of two to three due

to the frequency-dependence of the real and imaginary parts of

the intrinsic y-parameters. This is also demonstrated in Fig. 6

which shows the measured and modeled s-parameters at a

single bias point. In Fig. 6(a) all the higher order elements

up to order 5 are present and in Fig. 6(b) the model consists

only of the zeroth and first order elements. It is apparent that

the simple model with only parallel nonlinear RC elements is

sufficient at lower frequencies (below 6 GHz), while it cannot
accurately model the variation of S1l, s21 and s22 at higher

frequencies.

Since the mixer measurements of the next chapter were per-

formed at low frequencies with RF and LO around 1 GHz, the

simple model without higher order elements was considered

sufficient. This also helps in minimizing the computer time

which is an important factor in mixer intermodulation analysis

where the calculations tend to be very time-consuming. For

example, the model used in Fig. 6(a) with up to fifth-order

elements requires three times as many convolution operations

as the simple model used in Fig. 6(b). The adopted simple

model can be drawn as in Fig. 7, where the y-parameters of
the intrinsic FET are represented with the branch admittances,

each consisting of a parallel connection of a nonlinear conduc-

tance and a nonlinear capacitance. This way of presenting the

large-signal model is not necessarily required, the measured

y-parameters could be handled directly. However, this circuit

representation is widely used and the circuit elements can be

readily associated with physical characteristics of the device.

Using high-degree Chebyshev expansions in the circuit

analysis would be wasteful since comparable accuracy can

be obtained with lower degree expansions with much less

computations. Consequently the next step is to decrease the

degree of the Chebyshev expansions as much as possible

K=3

(a)

(b)

with measuredFig. 6. Effect of the higher order elements in the model
(squares) and modeled (dots) s-parameters 1 to 18 GHz. In (a) orders up

to 5 are included. In (b) only the zeroth (= conductance) and first order (=
capacitance) elements are included, V8. = – 1.0 V and V& = 2.5 V.

Fig. 7. Small-signal circuit model for the intrinsic FET used in the mixer

simulations.

while keeping the approximation error acceptable. After some

experimentation it was found that the values in Table II give
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TABLE H
SELECTED DEGREESOF CHEBYSHEV EXPANSIONS

Cg. Cgd cm, cd, K=6 L=6 1

80, I

?0

60

50
z
~ 40

- 90
a

an 20

10

0

.,o~
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

vd~ (V)

Fig. 8. From the measurements extracted (squares) and with the Chebyshev

expansions modeled (lines) dependence of the transconductance on the bias
volta~es.

an acceptable approximation error. Those elements which de-

scribe the gate conduction (Ig, gfs, gfd ), require kwge number

of terms in the Chebyshev series. However, since they are

mainly controlled by a single voltage (VI and vl – V2), single

Chebyshev expansions were used to describe them. In fact, it

was found that the most difficult term, gfd, is not required

at drain voltages V2 > 0.3 V. In the calculations of this

work this was always the case and consequently gfd was

left out of the model. Again the s-parameters of the model

were calculated at each of the 2737 points and compared to

the measured s-parameters. The results are shown on the lines

marked with (c) in Table I. The accuracy of the approximation

can lbevisualized from Fig. 8 which shows, as an example, the

bias-dependence of the transconductance, as obtained from the

meawtrements and from the model with truncated Chebyshev

series.

Thus we have arrived at the coefficient matrices H[~)

for each of the elements in the small-signal bias-dependent

model. The large-signal currents are calculated from the line

integrals (28) and we have to determine the coefficient ma-

trices integrated over one of the controlling voltages, e.g.,

H(k) In principle, the line integrals should be independentZJ.c“
of the integration path. However, the small-signal functions

are generated from measurements through truncation of the

Chelbyshev expansions and therefore always contain some

amount of error with the result that the condition of integra-
bility is not exactly met. In order to get an impression of the

magnitude of this problem, a test case was analysed with the

FET driven with a moderately strong signal (+3 dBm) using

two different paths of integration. The current waveforms were

found to be almost identical, the main difference between

the two integration paths was a small difference in the dc

‘ 4, I

-121 I
–la -1.4 –1.0 –0.6

Gate voltage Vg, (V)

(a)

–141 I
–20246810 1214

LO power PLO (dBm)

(b)

Fk. 9. Com~arlsonof the measured(s~mbols)and simulated(lines) con-
version gain o; the mixer. (a) Shows the dependence on the bias voltages, and
(b) shows the effect of the local oscillator power.

drain current. This gives an indication that the condition of

integrability was quite closely met. However, this question

certainly requires further investigation in the future.

VII. MEASURED AND CALCULATED RESULTS

The constructed large-signal model was then used to simu-

late mixer measurements which were made on wafer using the

same FET chip, with both the drain and source terminated to

500. The effect of the bias voltages and local oscillator (LO)

power on the conversion gain (~RF = 0.8 GHz, .f’Lo = 0.9

GHz) were measured around the experimentally found best
operating point V& = – 1.3 V, PLO = 6 dBm at drain voltage

vd, = 2.5 V. These measurements were simulated with the
frequency-domain algorithm with three harmonics of RF, five

harmonics of LO and intermodulation products up to order

five taken into account, or with 27 frequencies in total. Fig. 9

shows both the measured and simulated results. We can see

that the effects of bias voltages and LO power are accurately

predicted by the simulation.
Finally, mixer intermodulation measurements were made at

the same operating point by sweeping the power level of two

closely (5 MHz) separated RF tones and observing the power

levels of the IF and third-order intermodulation products on

spectrum analyzer. Again, the measurement was simulated

using the frequency-domain method. Three harmonics of the
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Fig. 10 Measured (symbols) and simulated (lines) IF and IM levels at the
output of the mixer.

two RF signals, five harmonics of the LO and intermodulation

products up to order five, or 104 frequencies in total, were

taken into account. In order to be able to extend the simulation

to relatively high power levels, i.e., past saturation of the

IF, it was necessary to widen the normalization range of the

gate voltage to —5 ...0.8 V by extrapolation. Measured and

simulated results are shown in Fig. 10, and again we can notice

excellent agreement. The computer used in all the calculations

was a 486 machine with 8 Mbyte RAM,

VIII, CONCLUSION

An analysis method has been presented that extends the

applicability of the frequency-domain methods to strongly

nonlinear circuits. This was made possible by the use of

Chebyshev expansions to describe the nonlinear functions.

Nonlinear functions are evaluated directly in the frequency

domain with the three-term recurrence formula of orthogonal

polynomials, This procedure is numerically stable so that

high-degree expansions can be employed to describe strongly

nonlinear functions.

A novel frequency-domain modeling scheme for nonlinear

devices has been developed, The model is inherently self-

consistent due to the measurement-based construction: The

large-signal currents are directly constructed from small-signal

y-parameters through contour integration. The model has

the advantage that the frequency-dependence of measured

small-signal parameters can be described as accurately as

desired. The model consists of polynomials, therefore, all the

derivatives of interest exist and are continuous. Frequency-

domain construction guarantees inherent accuracy in describ-
ing frequency-dependent characteristics, like gd., of the non-

linear devices.

The analysis method and modeling approach have been

experimentally verified through excellent correspondence of

the measured and simulated results on a monolithic MESFET

operating as mixer. The efficiency of the frequency-domain

method has been demonstrated by analysing the intermodula-

tion distortion of the mixer with three independent tones and

over 100 frequencies in total, driven past saturation with strong

RF signals, on a personal computer.
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