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Frequency-Domain Analysis of
Strongly Nonlinear Circuits Using a
Consistent Large-Signal Model

Tapani Nirhi

Abstract—This paper describes an analysis method that extends
the applicability of the frequency-domain methods to strongly
nonlinear circuits. Nonlinearities are described with Chebyshev
expansions which are evaluated with a numerically stable three-
term recurrence formula. The method is coupled with a novel,
measurement-based consistent modeling approach which allows
improved accuracy in describing the frequency-dependence of the
measured small-signal parameters. The analysis method and the
modeling approach are verified by comparing measurements and
calculations on a MESFET mixer, driven with two and three
tones.

1. INTRODUCTION

ARMONIC-BALANCE (HB) methods have matured

into a reliable workhorse in the design of nonlinear
microwave circuits. However, when the circuit has several
excitation frequencies, the analysis becomes easily impractical
due to the long computation time. Even with only two inde-
pendent tones. the analysis is very slow on a workstation [1],
and the calculation of the intermodulation products of a mixer
with three independent frequencies is most conveniently done
on a supercomputer [2]. At present the maximum number of
independent frequencies that can be handled with HB software
is limited to three, although there would be need for more, for
example in the satellite communication systems.

Frequency-domain methods do not suffer from the same
limitations: both the linear and nonlinear parts of the circuit are
analysed in the frequency domain so that the time-consuming
conversions between frequency and time domains are avoided
[3]. The number of independent frequencies is not limited to
three; it is the total number of frequencies. not the number
of fundamental frequencies. that determines the complexity
of the problem. The spectral-balance method of Rhyne ez al.
[4], which uses power series to approximate the nonlinear
functions, is a well-known example of frequency-domain
methods.

Modeling of nonlinear devices has been the weakest point
of the frequency-domain approach. Nonlinear components are
traditionally modeled in the time domain by using algebraic
equations to describe the nonlinearities. These equations them-
selves are typically simplified with nonconsistent construction,
limited bias or frequency range, etc., and determining the
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model parameters by fitting the equations into measured data
is often a complicated and inaccurate procedure. Such a model
can be converted suitable for the frequency-domain analysis
by fitting power series [4], polynomial expansions [5], or
specific functional approximations [6] to the model equations.
However, this is netther accurate nor elegant approach.

Second, approximation of strongly nonlinear functions with
power series requires that there is a great number of terms.
e.g., several tens, in the series. Large coefficients are needed
for the high-degree terms in the power series and this de-
grades significantly the numerical accuracy. As a result, the
application of the methods using power series to describe the
nonlinearities has been limited to relatively weakly nonlinear
circuits. For example, to the author’s knowledge no results
have been published about the application of the generalized
power seties method [4] to strongly nonlinear cases like mixers
under large RF-signal excitation.

This paper describes a frequency-domain method where
both the limitations of the conventional power series ap-
proach are removed: All the nonlinearities are represented
in this method with Chebyshev expansions instead of power
series [5]. [7], and [8]. Excellent numerical stability of these
expansions, when evaluated through a recurrence formula,
allows the use of high-degree expansions, which are necessary
for describing strongly nonlinear devices. A novel consistent
modeling approach is presented, where the frequency-domain
large-signal model is constructed directly from small-signal
measurements through integration [9], without the intermediate
step of fitting to algebraic model equations. In comparison.
e.g., to the Root model [10], this approach offers possibilities
for more accurate representation of the frequency-dependence
of the small-signal y-parameters of the device. This principle
allows the description of the frequency-dependent character-
istics (e.g.. gg,) of the device in a natural way, in contrast
to the HB methods, where the time-domain formulation of the
nonlinearities makes it very difficult to construct a large-signal
model that is accurate both at dc and RF. In fact, the earlier
disadvantage of the frequency-domain approach, modeling of
nonlinear devices, is now turned into an advantage.

Coupling the new large-signal model to the frequency-
domain algorithm results in an effective and accurate method
for analysing nonlinear circuits under multi-tone excitation.
This is demonstrated in the last part of the paper, where
measured and calculated results for a MESFET mixer are
compared. The method is so efficient that the intermodulation
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2. FORMULATE EQUATIONS
FOR LINEAR AND NONLINEAR
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<
9. CALCULATE CORRECTION
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7. CALCULATE ERROR:
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Fig. 1. Flow-chart of the frequency-domain algorithm.

analysis of the mixer, with three independent tones and over
100 frequencies in total, is possible on a PC, even with so
high RF levels that the mixer is driven to the saturation of the
IF and beyond.

II. FREQUENCY-DOMAIN ALGORITHM

The flow chart of the algorithm is shown in Fig. 1. Main
differences in comparison to the conventional HB methods
are in the following blocks.

1) Nonlinear elements are approximated with Chebyshev
expansions (Step 1).

2) The frequency-domain response of the nonlinear el-
ements for given spectra of the driving voltages is
calculated directly in the frequency domain (Step 6).
For this purpose the frequencies are selected prior to the
analysis in Step 3.

3) The frequency-domain formulation of the problem al-
lows very economical evaluation of the Jacobian in Step
8.

With strongly nonlinear circuits the full Newton step fails
very often and some strategy for global convergence has to
be adopted. Presently, the backtracking line-search algorithm
is used for this purpose [11]. Details of the frequency-domain
algorithm are discussed in the following chapters, followed by
a description of the large-signal model.

A, Selection of Frequencies

In the frequency domain method of this study, the frequen-
cies at which the circuit is to be analysed, are always selected
before solving the circuit equations. During the analysis, this
set of frequencies, or the frequency set S, is kept fixed and
only those harmonics and intermodulation products falling on
these frequencies are taken into account in the analysis. Each
frequency wy, of the frequency set can be written with the help

of P fundamental frequencies wi,wy,-+,wp
wr = kw1 + kaws + -+ + kpwp ey
where the harmonic numbers kq, - - -, kp are integers. For each

frequency the order is defined as
P
ORD(ws) = Y _ [kil S )
i=1

Determining the frequencies includes the selection of the
maximum values for the harmonic numbers ki,---,kp, SO
that all the significant frequencies are retained, but the total
number of frequencies Nfreq is kept to the minimum.

Two quantities are used to determine the frequency set,
maximum number of harmonics (maxH) and maximum order
of intermodulation (maxIMt). maxH is a vector containing the
maximun harmonic numbers for each fundamental frequency

maxH = [klrhax kaax e kPmaX]T (3)

and maxIMt is a scalar. maxH gives the maximum number
of harmonics for each of the P fundamental frequencies
and maxIMt indicates the maximum order of intermodulation
products taken into account. Only positive frequencies are used
in the calculations. Thus the frequency set S is defined by the
following conditions

S={w|w=kw +kows + -+ kpwp;C1,C2,C3} (4)

C1. w>0
C2. ‘kll Skimaxy 1217277]3
C3.  ORD(w) < maxIMi,

when at least two harmonic numbers, k;

and k; are not zero.

This selection of frequencies is unconventional. More often
the spectrum is either triangular, for which C3 holds for
all 4, or rectangular, which is defined by C2. The reason
for this more complicated truncation criteria is the additional
flexibility in controlling the frequency set, as the number of
harmonics for each of the fundamental frequencies can be
separately controlled and, in addition, the maximum order of

-the intermodulation products can be independently defined.

In this study the frequencies of the frequency set are
arranged, starting from zero (=dc) according to the increasing
order. The highest order in the frequency set is maxORD

maxORD = max{kimax, maxIMt}. 5)

Within each order, the frequencies are sorted by magnitude,
with the lowest frequency coming first and the highest fre-
quency last. The frequencies are written, in this order, to
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the frequency vector (frequency table) ftab. All the voltages,
currents, charges etc are represented in the analysis with
complex vectors of phasors with length equal to Nfireq, the
number of frequencies. The phasors are arranged in the same
order as in ftab, and if the frequency fj, of a certain phasor
"% 15 needed in the analysis, it is available as the kth element
of the frequency table ftab[k]. Associated with the frequency
table is the intermodulation table imt, which is a vector of
integers giving the indices (row numbers) of ftab at which
each IM-order begins. This vector is used when performing
the multiplication of two waveforms in the frequency domain.

B. Frequency-Domain Operations

All the voltages, currents, charges and other waveforms of
the nonlinear circuit are represented in the following form in
the time domain, here written for the voltage

N

o(t) =Y {Vie cos{wit) — Vis sin(wpt) }. (6)
k=0

Thus the frequency component of the voltage at frequency wy,
is given either with two real numbers, Vi and V,,, or with a
complex phasor V.. These two are related according to

Vie = |Vi|e??F = Vie + jVis. (7)

The time-domain quantities, waveforms. are written with low-
ercase letters, e.g., v(¢), and the corresponding representations
in frequency domain, (frequency) spectra, are written with
bold typeface, e.g., v.

Following symbolic notation is used to indicate the re-
lationship between the time-domain and frequency-domain
representations

v=F{v(t)} or veolt). (8)

The spectrum corresponding to the waveform (6) is given with
the real (2N 4+ 1) x 1 vector v, where underlining indicates
the fact that it is a real vector

Vie Vie Voo Vo Ve Vaslto (9

v=[¥

Alternatively. the spectrum is given with the complex vector
of phasors (Vp is the real dc voltage)

v=[Vo Vi V, VT (10)
Generally, lowercase letters are used for scalars, bold lower-
case letters for vectors. and bold capital letters for matrices.
Nonlinear components are described in this work with
the help of single and double Chebyshev expansions for
the nonlinear functions. For strongly nonlinear devices also
rational functions can be used [12]. Evaluation of the time-
domain response of these components to an excitation of
the form of (6) involves only the basic algebraic operations
addition, subtraction, multiplication and division between the
two waveforms a(t) and b(¢). In the frequency-domain al-
gorithm the response is calculated directly in the frequency
domain. This means that we have to be able to calculate
the frequency-domain equivalents to these basic operations
between two frequency spectra a and b, remembering that a

and b are complex vectors of the phasors like in (10), where
the frequencies are truncated and sorted as was described
earlier.

Addition and subtraction of two spectra are trivial

ct)y=a(t)£b(t) < c=ath. (1)

In contrast, time-domain multiplication and division are
nonlinear operations resulting in the generation of new fre-
quency components. Product in the time domain corresponds

to the convolution in the frequency domain

c(t) =alt) - b(t) — c=axb (12)
and division in the time domain is the inverse operation,
corresponding to the deconvolution in the frequency domain

b(ty = c(t)/a(t) <« b =c#a. (13)

Here the symbol “#” is used to indicate the deconvolution.
Repeated application of these operations during the evaluation
of the response of the nonlinear component results in very
large number of frequencies, even if there are only few driving
frequencies. However, phasors at many of these frequencies
are insignificant (harmonics and intermodulation products of
high order). The basic principle is adopted that the frequencies
of interest are determined prior to any circuit analysis. Thus
the length of voltage, current, charge, etc., vectors remains
constant (=Nfreq) throughout the analysis and only the com-
plex amplitudes of each frequency component change during
the analysis.

In the following chapters the calculation of the last two oper-
ations in the frequency domain is described, first two different
ways of calculating the product (12) and then the division (13).
These operations were outlined earlier in [12], and a similar
set of operations was also included in the “arithmetic operator
method” tn [6]. However, since the approach taken here with
spectal emphasis to the effective truncation of frequencies, is
somewhat different to that in [6], it is justified to present a
detailed description of the frequency-domain operations.

Direct Multiplication: The most straightforward way of
calculating the time-domain product (12) is to multiply. in turn,
each complex phasor A, = A., + A, of a(t) by each phasor
B, = B, + jB,, of b(t) and apply trigonometric rules to
assign the result to the corresponding phasor C'y, = C\ . +5Csy
of ¢(t). Three possible cases are encountered when multiplying
phasors A, and B,, depending on the magnitudes of w, and w,

1) Sum frequency:

Cp=A4,-B,/2 Wp =w, +w, €S
AND
{2)  Difference frequency (positive):
Ck:Al~Bj/2 wk:wl—w,eS
OR
3) Difference frequency (negative):
Cp.=A47 B,/2 wi =w, —w, € 5}

where the asterisk (*) indicates complex conjugate.
Thus each phasor of ¢ is calculated

Cr = Ckp + Okmp + Crmn (14a)
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where
1 .
Cip = 5 > A B; (14b)
(4,4)€l,
1
Crmp = 3 > AiB; (14c)
(4,5)€Imp
) 1 )
Chomn = 5 > A;-B; (14d)
(i,))ELnn
and
I, = {(4,7) | wi + wj = wps wi,wj,wr, € S} (l4e)
Ip = {(4,§) | wi — wj = wrjwi,wj,we € S} (14D

—— {(Z,j) | Wi — Wi = WeiWi, W5, wWe © S} (14g)

On some occasions, it is useful to be able to omit the
multiplications between high-order phasors. Recalling that the
frequencies in a and b are determined by the frequency table
ftab (through quantities maxH and maxIMt ), we now define
a new quantity maxIMp, which sets the maximum order of
the intermodulation products that are taken into account when
calculating the convolution. Setting maxIMp = 2 maxORD
is the normal case and it means that all the components
falling on the frequency set S are taken into account when
calculating the convolution, while maxIMp = 1 neglects all
the frequency conversions. maxIMp gives additional flexibility,
as the number of multiplications in the calculation of the
convolution can be reduced by excluding products between
high-order frequencies by setting maxIMp < 2 maxORD. This
is. demonstrated in Fig. 2.

The phasors in a and b are arranged in the ascending order
of intermodulation and thus. it is easy to avoid unnecessary
multiplications by performing the multiplication of-each A; in
turn with only those B; with 0 < j < jmax, where jmax is
the maximum index of ftab so that ORD(w;) + ORD(w;) <
max/Mp. In the practical procedure it is important to avoid
comparison and branching operations and to use predeter-
mined, direct mapping instead. Since we have defined exactly
in which order and how the multiplications are performed,
the result from each product of two phasors can in fact be
assigned to the corresponding output phasor Cj with the help
of precalculated index vectors. All the necessary products
(but only those!) between the real and imaginary parts of the
phasors of the two spectra are calculated into a single vector
and the final result is obtained simply through assignment and
addition operations using these index vectors.

These two features, avoiding all unwanted multiplications
and the use of precalculated index tables, are instrumental in
making the convolution procedure efficient. This procedure
of calculating the truncated convolution was originally used
in [5] and is conceptually similar to the spectrum mapping
principle of [13].

Convolution as a Matrix Product: The direct procedure de-
scribed above is fast and well suited to repeated calculation
of the product (12) as required in the recursive evaluation
of the Chebyshev expansions in the frequency domain. In
some occasions, however, it is advantageous to formulate the

ORDER OF @ i —
012, 3 4 5

maxiMp maxIiMp

=3 =7

Fig. 2. Example-on how the frequencies included in the frequency-domain
convolution are affected by the parameter maxIMp. Two fundamental fre-
quencies.

product as an explicit matrix product

o(t) = a(t) - b(t) < c=A-b.

(15)

This is.the case for example when the inverse operation or
division has to be performed, as will be seen later. Calculating
the convolution as a matrix product was originally developed
in [12], where rational functions were used to describe strongly
nonlinear components. The arithmetic operator method of
reference [13] follows the same principle.

- The product (15) cannot be formulated using complex
representation (10), instead a and b are written as real (2N +
1) x 1 vectors, as in (9). The (2N +1) x (2N +1) convolution
matrix A is formed through a transformation from a, here
written symbolically with operator “~”
A=a

(16)

This transformation is found by first writing (15) in the matrix
form

[ Co ] reoo.o. . . . T [ Bo ]
Clc Blc
C1s By,
c. | - 2 4l B
Cis zZ8 gl Bjs
CNC - . . . . . . . 0 BNC

_CNS - - ~ — —BNs .

A
a7

Submatrix Z©9) gives the contribution of the frequency com-
ponent at w; in b(t) to the frequency w; in c(t)

Cic| _ Z8) ZED7 1B _ G | Bie
[O } ffv;; [252“ z8 || Bjs ‘].EZ:OZ Bjs |

(18)
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It is calculated. for each pair of frequencies w, and w,. from
those phasors Ay in a(t) which, when multiplied by phasor
B, at frequency w,. give contribution to the phasor C’ at
frequency w,. The submatrix Z (#1) consists of three parts,
corresponding to whether w, is the sum frequency. positive
difference frequency or negative difference frequency of wy
and w,

709 = gk L z0 7 k), (19)

1) Sum frequency

w) _ [ Ake =i | _ o

Zp = A, Al W +w; = w, > Wk = w, — wy.
) } (20a)

2) Positive difference frequency
(k) _ [Are Ay | o _ ,‘
Zmp Are A Wi~ W, = W, > W = w, +wy.
i i (20b)

3) Negative difference frequency
T B
) i (20¢)

Only those frequencies wy € S are included in (20) which
satisfy the condition

ORD(wy) + ORD(w,) < maxiMp. (21)

Again. index tables are formed prior to the circuit analysis. cor-
responding to the three cases above. During the analysis, the
construction of the matrix A in (15) requires only assignment
and addition operations on the elements of vector a. Vector ¢
is then obtained from the conventional matrix product.

Division: Calculating the convolution as a matrix product
(15) with the help of the convolution matrix A = a, has
the consequence that the time-domain division (13) can be
calculated by inverting this matrix

bit) =c(t)/a(t) = b=A"" c. (22)

In practice b is most efficiently calculated by solving the
set of linear equations (22). explicit formulation of the inverse
matrix is generally not required. Being able to calculate the
division of two waveforms in the frequency domain allows us
to use rational functions (and continued fractions) to model
nonlinear components [12]. The same principle will also be
used later to construct and invert the Jacobian 1 the Newton’s
method.

In this last application, the ability to control the order of
intermodulation products in matrix A by maxIMp is especially
beneficial: in principle A is a dense matrix, but reducing
maxIMp results in sparser A, which additionally is then close
to lower triangular. Fig. 3 shows an example of the structure
of the convolution matrix. It is possible to take benefit from
the sparsity and special structure of A and write a special
algorithm to solve the system (22) efficiently. In this work this
has not yet been done, but A is handled as a full matrix and
Crout’s algorithm is employed to solve the system of linear
equations.

. meire
k23 .

Fig. 3. Example of the structure of the convolution matrix Each dot mdt-
cates a nonzero entry 1n the matrix. Two fundamental frequencies, maxiMp
= 5.

III. LLARGE-SIGNAL MODEL

We now turn to the construction of the frequency-domain
nonlinear model. The model is measurement based, which
means that the measured small-signal data is used directly,
without the need to fit the data to algebraic formulas. This work
concentrates on the modeling of a MESFET, but the modeling
principle is completely technology independent. In fact. this
approach was used earlier in [9] to describe the currents
of a “complete” black-box model for the extrinsic FET,
including parasitics. In that work the separate determination
of the parasitics was not necessary, they were included in
the nonlinear model itself. Here we use the y-parameters of
the intrinsic FET to construct the model; in this way the
frequency-dependence of the y-parameters is less severe and
lower order series are sufficient for the accurate representation
of the y-parameters.

We assume that the currents at the two terminals of the
intrinsic FET. driven with large-signal voltages v1(t), v3(¢),
can be written in the following form (v = 1,2)

. d
i (t) = 950)(’01, vg) + — 91)('01, vg)

atli
4z d?
+ gﬁqu)(’uh vy ) + Eﬁqfa(m’ vg) 4 -
. (2
= .‘JL(O) (w1, v2) + C]fl)(’”h va) + qz( vy, v9)
(3)
+q, (vi,v2)+---. (23)

This expression is an extension of the conventional quasistatic
formulation [14], [15], where only the first two terms of the se-
ries expansion are included, namely the static current through

. 0
a nonlinear conductance, g( )

, - and the first order dynamic

current through a nonlinear capacitance, qf”. The higher
order terms allow an accurate description of the frequency-
dependence of the measured small-signal parameters. as will
be shown below. We have a large-signal circuit model as
shown in Fig. 4.

We require that the model is time-invariant, i.e., the nonlin-
ear functions gv(o) and q,(k) are not explicit functions of time,
but their time-dependence is solely through the dependence
on the two controlling voltages. Further, we assume that the
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Fig. 4. Large-signal model for a nonlinear two-port.

partial derivatives of these functions

_ 95" RO
- ij &

,7=1,2 k=12, 24)
depend only on the instantaneous voltages v1(t), va(t), and
not on their time-derivatives. With these assumptions, we can
write the small-signal response of the device at port i, at
dc bias point Vg, Voo, to a small variation in the voltages
du1 (t), dug(t)in_the following form

di;(t) = M9 dvy + hgg>dv2 + hl} diy

+ 1D diy + B diy + B Ddiy + . (25)

Here all the partial derivatives are developed at the dc oper-
ating point. Moving to the frequency domain, we obtain the
response to a small sinusoidal excitation dvy(fx), dva(fi), at
frequency fr

dii(f) = [A) + ()bl + (jwr)?hS + '-] - dvy (fr)
+ 0D + Gue)h® + Gwr)2hE) + -] - dva(fr)-
(26)

This can be compared with the measured small-signal response
at a dc bias point (Vig, Vao)

dii(fr) = yir(Vie, Vao, we) - dvi(fe)

+ yi2(Vio, Vao, wi) - dva(fr). 27

Here 4;;(Vig, Vao,wr) are the measured small-signal
y-parameters of the intrinsic FET at the bias point (Vig, Vo)
and frequency f.. We can now see that the higher order
terms in (23) account for the frequency-dependence of
the measured y-parameters: The second-order term gives
quadratic frequency-dependence to the real part of y;;, the
third-order term causes cubic variation in the imaginary part of
y;; and so on. Thus we can identify each of the terms in (25)
directly from the measurements. The large-signal functions

in (23) can then be calculated from the path-independent
line integrals [10]

‘ vy (t
QEO)(M,W) = Ii0(Vio, Vao) + / hg?)(”b Vao)dvy

Vio
v (1) 0
+ / B (v1(8), v2)dvs (282)
Vao
*) “®
g (v1,v2) =/ hii (v, Vag)duy
Vio
v2(¢) 5
+/ BB (wy (1), v2) dvs. (28b)
Vao

We can notice that it is important that the small-signal func-
tions h( ) do not depend on the time-derivatives of the
Voltages since, if this were the case, it would be impossible
to construct the large-signal functions g§°> and qfk) from
static small-signal measurements only. The model of (23) is
quasistatic despite the presence of higher order terms in the
series which correspond to higher order circuit elements [16]
in the small-signal circuit model.

We observe that retaining only the first two terms in the
series (23) gives resemblance to the Root model [10], where
the frequency-dependence of the real parts of y1; and yq2
(caused by the series connection of r; with Cys and rgq
with Cyq, respectively) are neglected. Keeping higher order
terms in the series allows more accurate description of the
frequency-dependence of the y-parameters of the intrinsic de-
vice in a consistent manner. The large-signal and small-signal
models are inherently consistent, since the large-signal model
is directly constructed from the small-signal characteristics
through the line integrals (28). It should be noted that the
“delay-effect,” corresponding to the imaginary part of yo;
(which is normally described with 7 in small-signal models) is
represented in this model with h21), i.e., as a transcapacitance,
as is done also in [10].

Next step in the modeling is finding the Chebyshev ex-
pansions to describe the dependence of each of the h(k)
functions on the two bias voltages. For example, for the statlc
conductance we have

R (v1, v2) Z E rmnTim (2)Tn(y)- 29)
n=0m=0
Here z and y are the bias voltages, normalized to [—1--- + 1]

and K and L are the degrees of the expansion in the two
dimensions. Standard surface-fitting procedures can be used
to determine the Chebyshev coefficients a,,, [17]. The co-
efficients are then written into matrix Hg?), which has the
dimension (K + 1) X (L + 1). In practice, the coefficients for
a high-degree expansion are first determined and the degree is
then reduced as long as the approximation error is acceptable.
With the Chebyshev expansions, in contrast to the power
series, the coefficients for a lower-degree expansion are found
simply by truncation of the higher degree coefficients at the
desired point.

For the evaluation of the line integrals in (28), the Cheby-
shev coefficients for the integrated small-signal functions have
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to be determined. This is easily done from the coefficient
matrices Hgf) for the functions hgf) by using the integration
formula of the Chebyshev polynomials [18]. The resulting
matrix of coefficients, integrated, e.g., over x (that is, over
. . (k)

v1), 1S written as Hijw.

IV. EVALUATION OF THE CURRENTS

IN THE FREQUENCY DOMAIN

Functions approximated with Chebyshev expansion are
evaluated in a numerically stabe manner by using the well-
known Clenshaw’s recurrence formula [18]. In the frequency
domain, a two-dimensional function f(z,y) is evaluated from
the following recursion, by first calculating vectors c¢; in
y-direction for each + = K, K —1,---,0

(@ (@)
bpi,=byi; =0
b =2.y b, — bl fays j=L,L—1,-,0
IRG i

Next, these coefficient vectors are used to evaluate the function
in x-direction

digjo=dgi1 =0
di =2 -x+diy1 —digo +c;
i= K, K—1,---,0

f(x,y) = %(do —da).

(30b)

Here x and y are the normalized voltages vy and vo, matrix
A contains the Chebyshev coefficients a;; and its dimension
is (K+1)x (L+1)and § is a (N + 1) x 1 vector, with
the first element equal to one and the others zeros. We use the
short notation with operator T'{} for this recursion

f(x,y)=T{A,x,y}.

We are now able to calculate the large-signal functions, given
in (28), directly in the frequency domain, for given spectra of
the driving voltages

gi(v1,va) = T{D{*, z0,40}6
+ o [T{HY), x, 906} ~ T{HY), 208, y08}]
+ 6 [T{H), x,y} - T{HS,,x, 506 }]
(32a)
a (v, ve) = o [T{HY) x yo8) — TIHE) 208 yob)]
+ 8- [T{HY),x,v} = T{H), %, 108}
(32b)

€1y

Here zg,yo is the normalized dc operating point, D¢ is the
matrix of Chebyshev coefficients for the dc current in port
i and « and § account for the change of variables in the
calculation of the line integrals

Oé—dvl— leax_llmin
T dz 2

ﬁ _ dUQ . EZma,x - [Qmin (33)
Cdy 2 ’

Fig. 5. Circuit model for the simulation of the mixer measurements.

The current at port ¢ of the device, given in (23), is then
calculated in the frequency domain

ii(vla V2> = gi(vh V2) +0Q- q51>(V17V2>

+ 9% qP (vi, Vo) 4o (34)

Here €2 is a (N + 1) x (N + 1) matrix with the angular
frequencies jwgin the diagonal and zero elsewhere.

V. JACOBIAN

The frequency-domain formulation of the analysis problem,
presented in the preceding chapters, allows the construction
of the Jacobian in a very economical way. We consider, as an
example, the circuit of Fig. 5, which is used in the next chapter
to analyse the operation of a MESFET as a mixer. The gate and
drain currents of the intrinsic FET are represented with current
sources, as was presented in the preceding chapter. Impedances
Za, Zi, and Zg constitute the linear part of the circuit: Zg
includes the parasitics in series with the gate and the generator
impedance, which is 50 Q at RF frequencies. Similarly, 7
represents parasitics at the drain lead and the load impedance.
Voltage sources e1 and e provide the excitation to the circuit:
e includes the dc gate voltage, LO source and one or two RF
generators, while e consists only of the dc drain voltage.

Given the voltage spectra v; and v, at the terminals of the
mtrinsic FET, the gate and drain currents are calculated from
(34), here written in an abbreviated form

{ i1 = fi(vy,v2)

iy = fa(vi,va) .

(35a)
(35b)

The currents of the linear part of the circuit, calculated for the
same voltages, are

{ilLIYG'(V1+Vs-—el)
ior =Yy - (Va+vg—ea).

(36a)
(36h)

Here Y and Y, are diagonal matrices of the generator and
load admittances. Ideally, the magnitudes of these currents
should be the same as those calculated from the nonlinear part
of the circuit in (35). However, since we do not not know
exactly the correct voltages, we have the error vectors

€1 =1y +1i1z,
=[1+Zs - Yg]-i

. 37
+Z5-Yg~12+YG'(V1—el) ( a)
€3 = ip +iap
=Zs Yo iy +[1+Zs- Y] iy 37b)

+YL*(V2-—62).
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Here 1 is the identity matrix with dimension (Nfreq x Nfreq).
For the next iteration, we have to find the changes in the volt-
ages, Avy and Avy, that are nceded to reduce the predicted
" error to zero. In the time domain, changes Awvy(t), Avg(t)
cause the following changes in the currents

(38a)

{ Aiy(t) = 35 - Auy(t) + 2. Aws(t)
(38b)

Aig(t) = Z2 - Avy(t) + 82 - Auv(t) .

Writing the spectra of the derivative waveforms as h,,, the
changes in the frequency domain can be written with the help
of convolutions

(392)

Aip = hay * Avy + hog x Avs . (39b)

{ Ail = h11 * AVl + hlg * AVQ
Each term h;, consists of zeroth and higher order terms, up
to the desired level
hy =h® + 0.0+ 0P+ @0
Calculating the convolutions from matrix products, as in (15),
we get

Aiy = ﬁn CAvy + £12 cAv, (41a)

Mz - :1121 'éXl + £1_22 ' éXz . (41b)
Underlining here, as before, indicates that in the corresponding
vectors and matrices the real and imaginary parts are written
as real numbers, instead of the normal representation with
complex numbers. We can now write the resulting change in
the error vectors from (37). The corrections to the voltages
for the next iteration Avy, Avy are obtained by requiring that
this change cancels the error vectors of the current iteration
as shown in (42) at the bottom of the page. The matrix on the
right-hand side is the Jacobian J. By combining the error and
voltage vectors into single vectors € and Av, the correction to
the voltages is calculated by solving the set of equations

Av=J""(-¢). (43)
This way of constructing the Jacobian is remarkably simple
and part of the calculations needed are in fact already done
when evaluating the currents from (32) and can be simply re-
used here. The transformation “~” in (41) is very fast, since
precalcuated index vectors are used, as was discussed earlier.
Overall, in all the cases considered up to now, the additional
computer time required for construction and inverting the
Jacobian has been shorter than the time required for the actual
evaluation of the nonlinear functions.
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VI. MODEL FOR A MESFET

A large-signal model was constructed for a 1 x 300 pm
monolithic MESFET (Vp = —1.5 V) using the principle
described above. First, dc measurements were made and then
s-parameters were measured (on wafer) over the entire operat-
ing range of bias voltages (161 bias points, V, = ~3.--0.75
V, V4o = 0-..5 V) and frequencies (0.1---18.1 GHz).
Parasitics were extracted with the help of the measurements
on cold FET and Chebyshev expansions were fitted on the
y-parameters of the intrinsic FET.

In order to get an impression of how well the bias-dependent
small-signal model, consisting of Chebyshev polynomials,
represents the measured frequency and bias characteristics of
the FET, s-parameters of the model, including the parasitics,
were calculated at each bias point over the entire frequency
range from 0.82 to 18.1 GHz. At each point m = 1,---,2737
(161 bias points x17 frequencies = 2737 points in total)
an error vector As,,(m) was calculated from the measured
(845 (m)) and from the model calculated (s}, (m)) s-parameters

Asj(m) = si5(m) = s,;(m)

5,j=1,2 m=1,2---,2737. (44)

The following statistical quantities were then calculated for
each s-parameter.

e ABSERR average magnitude of the error vector.
|Asg;(m)].
MAX.ERR  maximum absolute error [As;;(m)].
STD.DEV  standard deviation of |As;;(m)].
REL.ERR  average relative error |As;;(m)|/]si;(m)|.

The effect of including higher order terms in (26) was
first studied. The first entry in Table I, marked with (a),
shows the statistics of the approximation errror with terms
up to order 5 included in the series. Each y-parameter was
approximated with a double Chebyshev expansion with the
maximum degree K = L = 12 which is sufficiently high to
accurately describe the bias-dependence of the y-parameters in
most bias points. Taking into account the very wide bias range
(from far below cutoff to strong gate conduction), the average
errors are very small, with typically 3% approximation etror in
the s-parameters. The maximum errors are greater, mainly due
to the fact that the maximum degree of 12 is not sufficient to
accurately represent the exponential nonlinearity of the gate
junction.

The next lines in Table I, marked with (b), show the
error statistics when only the static and first order dynamic
elements are included in the series describing the frequency-
dependence of the y-parameters, i.e., the admittances of the
intrinsic FET are modeled with a parallel connection of a
nonlinear capacitance and conductance, as is done in the Root
model [10]. Again the degree of the Chebyshev expansions

—& [1+ZS'XG‘]‘£11+ZS‘XG'£1-21+XG

—€ 1+2Zs Y] by +25-Y, -

[1+ZS'XG]'E12+Zs'XG'E22 M1

42)

[1+ZS'_Y_L]'_&22+—Z—S'—Y-L'h12+XL Av,
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TABLE I
STATISTICS OF THE SMALL-SIGNAL MODELING ERROR IN DIFFERENT
CasEs: (a) WitH HigH ORDER ELEMENTS UP TO ORDER 5 INCLUDED, (b)
WITH ONLY ZEROTH AND FIRST ORDER ELEMENTS INCLUDED, AND (c)
SAME AS CASE (b) But UsING TRUNCATED CHEBYSHEV EXPANSIONS

S11 S12 %21 12
ABS ERR (@) 0.011 0.004 0.027 0.015
by | 0.039 0,012 0.097 0.040
(<) 0.038 0013 0.097 0.037
MAX.ERR () 0.254 0.057 0.198 0.108
(b 0.269 0.067 0.233 0.117
{c) 0.201 0.053 0.553 0.134
STD.DEV {a) 0.020 0.005 0.024 0.013
(b 0.023 0.008 0.047 0.014
(c) 0.027 0.010 0.083 0.024
REL ERR (2 0.013 0026 0.036 0.028
(b 0.036 0.052 0,094 0.054
©) 0,054 0.068 0.124 0.064

is 12. We can see that, while the errors are still small, the
average errors have increased by a factor of two to three due
to the frequency-dependence of the real and imaginary parts of
the intrinsic y-parameters. This is also demonstrated in Fig. 6
which shows the measured and modeled s-parameters at a
single bias point. In Fig. 6(a) all the higher order elements
up to order 5 are present and in Fig. 6(b) the model consists
only of the zeroth and first order elements. It is apparent that
the simple model with only parallel nonlinear RC elements is
sufficient at lower frequencies (below 6 GHz), while it cannot
accurately model the variation of s11,s9; and sqo at higher
frequencies.

Since the mixer measurements of the next chapter were per-
formed at low frequencies with RF and LO around 1 GHz, the
simple model without higher order elements was considered
sufficient. This also helps in minimizing the computer time
which is an important factor in mixer intermodulation analysis
where the calculations tend to be very time-consuming. For
example, the model used in Fig. 6(a) with up to fifth-order
elements requires three times as many convolution operations
as the simple model used in Fig. 6(b). The adopted simple
model can be drawn as in Fig. 7. where the y-parameters of
the intrinsic FET are represented with the branch admittances,
each consisting of a parallel connection of a nonlinear conduc-
tance and a nonlinear capacitance. This way of presenting the
large-signal model is not necessarily required, the measured
y-parameters could be handled directly. However, this circuit
representation is widely used and the circuit elements can be
readily associated with physical characteristics of the device.

Using high-degree Chebyshev expansions in the circuit
analysis would be wasteful since comparable accuracy can
be obtained with lower degree expansions with much less
computations. Consequently the next step is to decrease the
degree of the Chebyshev expansions as much as possible

(®)

Fig. 6. Effect of the higher order elements in the model with measured
(squares) and modeled (dots) s-parameters 1 to 18 GHz. In (a) orders up
to 5 are included. In (b) only the zeroth (= conductance) and first order (=
capacitance) elements are included. Vs = —1.0 V and Vgg = 2.5 V.

/

intrinsic FET \

Ig

s] |

Fig. 7. Small-signal circuit model for the intrinsic FET used in the mixer
simulations.

while keeping the approximation error acceptable. After some
experimentation it was found that the values in Table II give
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TABLE 11
SELECTED DEGREES OF CHEBYSHEV EXPANSIONS
Io 85 K=28
8 K =46
s 8m 8ds K=8 |L=8
Ceo Coa Cm Cas k=6 |L=6

€ (mS)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 50
Vas (V)

Fig. 8. From the measurements extracted (squares) and with the Chebyshev
expansions modeled (lines) dependence of the transconductance on the bias
voltages.

an acceptable approximation error. Those elements which de-
scribe the gate conduction (14, g5, gf4), require large number
of terms in the Chebyshev series. However, since they are
mainly controlled by a single voltage (v1 and v1 — vg), single
Chebyshev expansions were used to describe them. In fact, it
was found that the most difficuit term, gzq, is not required
at drain voltages vy > 0.3 V. In the calculations of this
work this was always the case and consequently gfq was
left out of the model. Again the s-parameters of the model
were calculated at each of the 2737 points and compared to
the measured s-parameters. The results are shown on the lines
marked with (c) in Table I. The accuracy of the approximation
can be visualised from Fig. 8 which shows, as an example, the
bias-dependence of the transconductance, as obtained from the
measurements and from the model with truncated Chebyshev
series.

Thus we have arrived at the coefficient matrices Hg“)
for each of the elements in the small-signal bias-dependent
model. The large-signal currents are calculated from the line
integrals (28) and we have to determine the coefficient ma-
trices integrated over one of the controlling voltages, e.g.,
Hffz In principle, the line integrals should be independent
of the integration path. However, the small-signal functions
are generated from measurements through truncation of the
Chebyshev expansions and therefore always contain some
amount of error with the result that the condition of integra-
bility is not exactly met. In order to get an impression of the
magnitude of this problem, a test case was analysed with the
FET driven with a moderately strong signal (+3 dBm) using
two different paths of integration. The current waveforms were
found to be almost identical, the main difference between
the two integration paths was a small difference in the dc

Caleulated Vg,=2.5V
~== Calculated V3,=4.0V

Measured Vg,=2.6V
A  Measured Vg,=4.0V

Conversion gain G (dB)
.

-1.4 -1.0 -0.8

Gate voltage Vg (V)

-1.8

(@)

-10}

— Calculated
a Measured

Conversion gain G_ (dB)
&

-12}

-14

-_ 0 2 ‘i 8 8 1‘0 1’2 14
LO power Ppg (dBm)
(b)

Fig. 9. Comparison of the measured (symbols) and simulated (lines) con-
version gain of the mixer. (a) Shows the dependence on the bias voltages, and
(b) shows the effect of the local oscillator power.

drain current. This gives an indication that the condition of
integrability was quite closely met. However, this question
certainly requires further investigation in the future.

VII. MEASURED AND CALCULATED RESULTS

The constructed large-signal model was then used to simu-
late mixer measurements which were made on wafer using the

~same FET chip, with both the drain and source terminated to

50 2. The effect of the bias voltages and local oscillator (LO)
power on the conversion gain (frr = 0.8 GHz, fro = 0.9
GHz) were measured around the experimentally found best
operating point Vg = 1.3V, PL,o =6 dBm at drain voltage
Vie = 2.5 V. These measurements were simulated with the
frequency-domain algorithm with three harmonics of RF, five
harmonics of LO and intermodulation products up to order
five taken into account, or with 27 frequencies in total. Fig. 9
shows both the measured and simulated results. We can see
that the effects of bias voltages and LO power are accurately
predicted by the simulation.

Finally, mixer intermodulation measurements were made at
the same operating point by sweeping the power level of two
closely (5 MHz) separated RF tones and observing the power
levels of the IF and third-order intermodulation products on
spectrum analyzer. Again, the measurement was simulated
using the frequency-domain method. Three harmonics of the
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Fig. 10 Measured (symbols) and simulated (lines) IF and IM levels at the
output of the mixer.

two RF signals, five harmonics of the LO and intermodulation
products up to order five, or 104 frequencies in total, were
taken into account. In order to be able to extend the simulation
to relatively high power levels, i.e., past saturation of the
IF, it was necessary to widen the normalization range of the
gate voltage to —5---0.8 V by extrapolation. Measured and
simulated results are shown in Fig. 10, and again we can notice
excellent agreement. The computer used in all the calculations
was a 486 machine with § Mbyte RAM,

VIII. CONCLUSION

An analysis method has been presented that extends the
applicability of the frequency-domain methods to strongly
nonlinear circuits. This was made possible by the use of
Chebyshev expansions to describe the nonlinear functions.
Nonlinear functions are evaluated directly in the frequency
domain with the three-term recurrence formula of orthogonal
polynomials. This procedure is numerically stable so that
high-degree expansions can be employed to describe strongly
nonlinear functions.

A novel frequency-domain modeling scheme for nonlinear
devices has been developed. The model is inherently self-
consistent due to the measurement-based construction: The
large-signal currents are directly constructed from small-signal
y-parameters through contour integration. The model has
the advantage that the frequency-dependence of measured
small-signal parameters can be described as accurately as
desired. The model consists of polynomials, therefore, all the
derivatives of interest exist and are continuous. Frequency-
domain construction guarantees inherent accuracy in describ-
ing frequency-dependent characteristics. like g4,, of the non-
linear devices.

The analysis method and modeling approach have been
experimentally verified through excellent correspondence of
the measured and simulated results on a monolithic MESFET
operating as mixer. The efficiency of the frequency-domain

method has been demonstrated by analysing the intermodula-
tion distortion of the mixer with three independent tones and
over 100 frequencies in total, driven past saturation with strong
RF signals, on a personal computer.
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